Cryptanalysis
Shamir秘密共享中的多項式根
我需要知道如果他擁有少於門檻值的份額,他是否可以獲得 Shamir 秘密共享中多項式的任何根。
例如在 (t,n) 中,如果他有 t-1 份股份,他能否獲得原始多項式的任何根?
** 這裡我們假設多項式有一些根。
如果你有 $ t-1 $ 股份 $ (t,n) $ 系統,你有機會了解系統的根源……只要你的一些股票有一個 0 代表 $ y $ 協調。你不能學習任何其他的根源。
證明持有股份 $ y $ 座標 0 讓您了解根(如果這太明顯,請原諒我):
- Shamir 計劃中的份額是一對 $ (x, P(x)) $ , 在哪裡 $ x $ 是一個非零座標,並且 $ P(x) $ 是在該座標處計算的秘密多項式。如果 $ y $ 列出的座標恰好是 0,我們有 $ P(x) = 0 $ ,這幾乎是 $ P $ 有根在 $ x $ .
證明攻擊者無法在除 $ x $ 他擁有的股份的座標:
- 想想如果他可以的話會發生什麼。通過適配一個值 $ x’ $ 它不顯示為 $ x $ 協調他擁有的任何股份,以及 $ P(x’)=0 $ , 他可以把它當作另一份 $ (x’, 0) $ , 並使用它, 和他的 $ t-1 $ 現有的份額,並學習整個多項式。我們知道他做不到,所以他學不會這樣的 $ x’ $