Rsa
是什麼使基於格的密碼學具有量子抗性?
與 RSA 或橢圓曲線密碼學相反?
對RSA和橢圓曲線密碼(ECC)的攻擊基於Shor的量子算法,該算法用於RSA上下文中的整數分解。
更正: 請注意,正如@yyyyyyy 在評論中指出的那樣,Shor 的 DLP 算法沒有考慮在內;它也不是基於查找元素的順序(這在 DLP 上下文中通常是已知的)。兩種變體的共同點是 Shor 找到了某個地圖的周期格,而在分解上下文中,這個週期確實是( $ \mathbb{Z} $ -multiples of) 一個元素的順序,格子在離散對數設置中是二維的(並且包含形式為的向量 $ (𝑥,−1) $ 在哪裡 $ 𝑥 $ 是 DLP 實例的解決方案)。
循環群是 RSA(在整數環上)和 ECC(在有限域上的橢圓曲線上定義的加性群)的核心,因此存在漏洞。
然而,基於格的加密不依賴於這樣的結構。基於程式碼的密碼系統(例如 McEliece)也沒有,因此它們可以抵抗已知的量子攻擊。