Solidity
為什麼說 MESH 代幣在最近一些 ERC20 合約的溢出漏洞中易受攻擊?
你知道嗎,最近有一個漏洞允許在某些 ERC20 合約中為任何人創建單位。
但是,我沒有找到 MESH 的所述易受攻擊的程式碼。這是否意味著它在現實中並不脆弱?
如果不是,罪魁禍首是什麼?請舉例說明如何觸發漏洞!
// Abstract contract for the full ERC 20 Token standard // https://github.com/ethereum/EIPs/issues/20 pragma solidity ^0.4.18; contract Token { /* This is a slight change to the ERC20 base standard.*/ /// total amount of tokens uint256 public totalSupply; /// @param _owner The address from which the balance will be retrieved /// @return The balance function balanceOf(address _owner) public constant returns (uint256 balance); /// @notice send `_value` token to `_to` from `msg.sender` /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transfer(address _to, uint256 _value) public returns (bool success); /// @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` /// @param _from The address of the sender /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transferFrom(address _from, address _to, uint256 _value) public returns (bool success); /// @notice `msg.sender` approves `_spender` to spend `_value` tokens /// @param _spender The address of the account able to transfer the tokens /// @param _value The amount of tokens to be approved for transfer /// @return Whether the approval was successful or not function approve(address _spender, uint256 _value) public returns (bool success); /// @param _owner The address of the account owning tokens /// @param _spender The address of the account able to transfer the tokens /// @return Amount of remaining tokens allowed to spent function allowance(address _owner, address _spender) public constant returns (uint256 remaining); event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); } contract Owned { /// `owner` is the only address that can call a function with this /// modifier modifier onlyOwner() { require(msg.sender == owner); _; } address public owner; /// @notice The Constructor assigns the message sender to be `owner` function Owned() public { owner = msg.sender; } address newOwner=0x0; event OwnerUpdate(address _prevOwner, address _newOwner); ///change the owner function changeOwner(address _newOwner) public onlyOwner { require(_newOwner != owner); newOwner = _newOwner; } /// accept the ownership function acceptOwnership() public{ require(msg.sender == newOwner); OwnerUpdate(owner, newOwner); owner = newOwner; newOwner = 0x0; } } contract Controlled is Owned{ function Controlled() public { setExclude(msg.sender); } // Flag that determines if the token is transferable or not. bool public transferEnabled = false; // flag that makes locked address effect bool lockFlag=true; mapping(address => bool) locked; mapping(address => bool) exclude; function enableTransfer(bool _enable) public onlyOwner{ transferEnabled=_enable; } function disableLock(bool _enable) public onlyOwner returns (bool success){ lockFlag=_enable; return true; } function addLock(address _addr) public onlyOwner returns (bool success){ require(_addr!=msg.sender); locked[_addr]=true; return true; } function setExclude(address _addr) public onlyOwner returns (bool success){ exclude[_addr]=true; return true; } function removeLock(address _addr) public onlyOwner returns (bool success){ locked[_addr]=false; return true; } modifier transferAllowed(address _addr) { if (!exclude[_addr]) { assert(transferEnabled); if(lockFlag){ assert(!locked[_addr]); } } _; } } contract StandardToken is Token,Controlled { function transfer(address _to, uint256 _value) public transferAllowed(msg.sender) returns (bool success) { //Default assumes totalSupply can't be over max (2^256 - 1). //If your token leaves out totalSupply and can issue more tokens as time goes on, you need to check if it doesn't wrap. //Replace the if with this one instead. if (balances[msg.sender] >= _value && balances[_to] + _value > balances[_to]) { balances[msg.sender] -= _value; balances[_to] += _value; Transfer(msg.sender, _to, _value); return true; } else { return false; } } function transferFrom(address _from, address _to, uint256 _value) public transferAllowed(_from) returns (bool success) { //same as above. Replace this line with the following if you want to protect against wrapping uints. if (balances[_from] >= _value && allowed[_from][msg.sender] >= _value && balances[_to] + _value > balances[_to]) { balances[_to] += _value; balances[_from] -= _value; allowed[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } else { return false; } } function balanceOf(address _owner) public constant returns (uint256 balance) { return balances[_owner]; } function approve(address _spender, uint256 _value) public returns (bool success) { allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) public constant returns (uint256 remaining) { return allowed[_owner][_spender]; } mapping (address => uint256) balances; mapping (address => mapping (address => uint256)) allowed; } contract MESH is StandardToken { function () public { revert(); } string public name = "M2C Mesh Network"; uint8 public decimals = 18; string public symbol = "mesh"; // The nonce for avoid transfer replay attacks mapping(address => uint256) nonces; function MESH (uint256 initialSupply) public { totalSupply = initialSupply * 10 ** uint256(decimals); balances[msg.sender] = totalSupply; } /* * Proxy transfer token. When some users of the ethereum account has no ether, * he or she can authorize the agent for broadcast transactions, and agents may charge agency fees * @param _from * @param _to * @param _value * @param fee * @param _v * @param _r * @param _s */ function transferProxy(address _from, address _to, uint256 _value, uint256 _fee, uint8 _v,bytes32 _r, bytes32 _s) public transferAllowed(_from) returns (bool){ if(balances[_from] < _fee + _value) revert(); uint256 nonce = nonces[_from]; bytes32 h = keccak256(_from,_to,_value,_fee,nonce); if(_from != ecrecover(h,_v,_r,_s)) revert(); if(balances[_to] + _value < balances[_to] || balances[msg.sender] + _fee < balances[msg.sender]) revert(); balances[_to] += _value; Transfer(_from, _to, _value); balances[msg.sender] += _fee; Transfer(_from, msg.sender, _fee); balances[_from] -= _value + _fee; nonces[_from] = nonce + 1; return true; } /* * Proxy approve that some one can authorize the agent for broadcast transaction * which call approve method, and agents may charge agency fees * @param _from The address which should tranfer tokens to others * @param _spender The spender who allowed by _from * @param _value The value that should be tranfered. * @param _v * @param _r * @param _s */ function approveProxy(address _from, address _spender, uint256 _value, uint8 _v,bytes32 _r, bytes32 _s) public returns (bool success) { uint256 nonce = nonces[_from]; bytes32 hash = keccak256(_from,_spender,_value,nonce); if(_from != ecrecover(hash,_v,_r,_s)) revert(); allowed[_from][_spender] = _value; Approval(_from, _spender, _value); nonces[_from] = nonce + 1; return true; } /* * Get the nonce * @param _addr */ function getNonce(address _addr) public constant returns (uint256){ return nonces[_addr]; } /* Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(keccak256("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { revert(); } return true; } /* Approves and then calls the contract code*/ function approveAndCallcode(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //Call the contract code if(!_spender.call(_extraData)) { revert(); } return true; } }
我認為
transferProxy
可以提供答案,但是bytes32 h = keccak256(_from,_to,_value,_fee,nonce); if(_from != ecrecover(h,_v,_r,_s)) revert();
似乎確保這樣的錯誤不會發生。
在函式中
transferProxy
,if(balances[_from] < _fee + _value) revert();
會導致溢出錯誤。他們沒有檢查_fee + _value
小於2^256
。因此,當您設置 REALLY big number on 時_value
,_fee + _value
256 位的總和為 0,因此balances[_from]
檢查將通過!簽名驗證沒有問題,它與地址檢查令牌餘額有問題,_from
。
它在您提供的 Etherscan 頁面程式碼的第 209 行。我會說這份契約確實很脆弱。